Understanding the Corpus of Mobile Payment Services Research: An Analysis of the Literature Using Co-Citation Analysis and Social Network Analysis

Surabhi Verma, Sushil S. Chaurasia, Vibhav Singh

Resumo


Mobile Payment Services have evolved in the past 20 years, attracting the attention of international practitioners and research scholars. Although several review and analyses of literature have been conducted to examine the multiple dimensions of mobile payment services, no co-citation analysis has been conducted to examine and understand the knowledge structures involved in mobile payment services studies. Therefore in order to fill this research gap, this research article analyses the corpus of mobile payment services research published from 1997 to June 2017 using Bibliometric and Social Network Analysis (SNA) methods to develop an intellectual structure of mobile payment services research. All data source documents (406 articles and 3,424 citations) were obtained from Web of Knowledge (WoK) database. A co-citation analysis was used to analyse mobile payment services data. Factor analysis, citation and co-citation analysis, multidimensional scaling and centrality measurement are applied to the mobile payment services dataset using UCINET to identify the core influential articles in the field. This study identifies seven core clusters of mobile payment services research that centre around (1) Adoption and usage; (2) Trust, risk and security; (3) Application; (4) Scheme; (5) Protocol; (6) Architecture; (7) Mobile payment corporation. The findings of this research study provide core knowledge and directions for practitioners and researchers interested in the mobile payment services field.

Palavras-chave


Mobile Payment Services; Citation; Co-citation; Social Network Analysis

Texto completo:

PDF (English)

Referências


Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2),179-211.

Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory.

Apanasevic, T., Markendahl, J., & Arvidsson, N. (2016). Stakeholders’ expectations of mobile payment in retail: lessons from Sweden. International Journal of Bank Marketing, 34(1), 37-61.

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113-120.

Borgatti, S. P. (2002). NetDraw: Graph visualization software. Harvard: Analytic Technologies.

Cagliano, A. C., Cagliano, A. C., De Marco, A., De Marco, A., Rafele, C., & Rafele, C. (2017). E-grocery supply chain management enabled by mobile tools. Business Process Management Journal, 23(1), 47-70.

Chen, F., & Liu, Y. (2016). Research on the risk factors of mobile business: based on the sorting Delphi method. International Journal of Engineering Research in Africa, 21.

Chen, L. D. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32-52.

Cheng, Y. H., & Huang, T. Y. (2013). High speed rail passengers’ mobile ticketing Adoption. Transportation Research Part C: Emerging Technologies, 30, 143-160.

Constantiou, I. D., Damsgaard, J., & Knutsen, L. (2006). Exploring perceptions and use of mobile services: user differences in an advancing market. International Journal of Mobile Communications, 4(3), 231-247.

Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.

De Kerviler, G., Demoulin, N. T., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers?. Journal of Retailing and Consumer Services, 31, 334-344.

de Reuver, M., Verschuur, E., Nikayin, F., Cerpa, N., & Bouwman, H. (2015). Collective action for mobile payment platforms: A case study on collaboration issues between banks and telecom operators. Electronic Commerce Research and Applications, 14(5), 331-344.

Di Pietro, L., Mugion, R. G., Mattia, G., Renzi, M. F., & Toni, M. (2015). The integrated model on mobile payment acceptance (IMMPA): an empirical application to public transport. Transportation Research Part C: Emerging Technologies, 56, 463-479.

Donner, J., & Tellez, C. A. (2008). Mobile banking and economic development: Linking adoption, impact, and use. Asian journal of communication, 18(4), 318-332.

Duane, A., O’Reilly, P., & Andreev, P. (2014). Realising M-Payments: modelling consumers’ willingness to M-pay using Smart Phones. Behaviour & Information Technology, 33(4), 318-334.

Falahati, A., & Jannati, H. (2015). All-or-nothing approach to protect a distance bounding protocol against terrorist fraud attack for low-cost devices. Electronic Commerce Research, 15(1), 75-95.

Fernandes, C., Ferreira, J. J., Raposo, M. L., Estevão, C., Peris-Ortiz, M., & Rueda-Armengot, C. (2017). The dynamic capabilities perspective of strategic management: a co-citation analysis. Scientometrics, 1-27.

Ferreira, J. J. M., Fernandes, C. I., & Ratten, V. (2016). A co-citation bibliometric analysis of strategic management research. Scientometrics, 109(1), 1-32.

Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.

Francisco, L. C., Francisco, M. L., & Juan, S. F. (2015). Payment systems in new electronic environments: consumer behavior in payment systems via SMS. International Journal of Information Technology & Decision Making, 14(02), 421-449.

Funk, J. L. (2007). Solving the startup problem in Western mobile Internet markets. Telecommunications Policy, 31(1), 14-30.

Gao, L., & Waechter, K. A. (2017). Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation. Information Systems Frontiers, 19(3), 525-548.

Gerpott, T. J., & Meinert, P. (2016). Correlates of using the billing system of a mobile network operator to pay for digital goods and services. Information Systems Frontiers, 18(6), 1265-1283.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5, No. 3, pp. 207-219). Upper Saddle River, NJ: Prentice hall.

Han, J., Yang, Y., Huang, X., Yuen, T. H., Li, J., & Cao, J. (2016). Accountable mobile E-commerce scheme via identity-based plaintext-checkable encryption. Information Sciences, 345, 143-155.

Hedman, J., & Henningsson, S. (2015). The new normal: Market cooperation in the mobile payments ecosystem. Electronic Commerce Research and Applications, 14(5), 305-318.

Hillman, S., & Neustaedter, C. (2017). Trust and mobile commerce in North America. Computers in Human Behavior, 70, 10-21.

Hsiao, C. H., & Yang, C. (2011). The intellectual development of the technology acceptance model: A cocitation analysis. International Journal of Information Management, 31(2), 128-136.

Huang, X., Dai, X., & Liang, W. (2014). BulaPay: a novel web service based third-party payment system for e-commerce. Electronic Commerce Research, 14(4), 611-633.

Hwang, R. J., Shiau, S. H., & Jan, D. F. (2007). A new mobile payment scheme for roaming services. Electronic Commerce Research and Applications, 6(2), 184-191.

Isaac, J. T., & Zeadally, S. (2014). Design, implementation, and performance analysis of a secure payment protocol in a payment gateway centric model. Computing, 96(7), 587-611.

Javan, S. L., & Bafghi, A. G. (2014). An anonymous mobile payment protocol based on SWPP. Electronic Commerce Research, 14(4), 635-660.

Kalinic, Z., & Marinkovic, V. (2016). Determinants of users’ intention to adopt m-commerce: an empirical analysis. Information Systems and e-Business Management, 14(2), 367-387.

Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2015). Examining the role of three sets of innovation attributes for determining adoption of the interbank mobile payment service. Information Systems Frontiers, 17(5), 1039-1056.

Karjaluoto, H., Töllinen, A., Pirttiniemi, J., & Jayawardhena, C. (2014). Intention to use mobile customer relationship management systems. Industrial Management & Data Systems, 114(6), 966-978.

Karnouskos, S. (2004). Mobile payment: a journey through existing procedures and standardization initiatives. IEEE Communications Surveys & Tutorials, 6(4).

Keramati, A., Taeb, R., Larijani, A. M., & Mojir, N. (2012). A combinative model of behavioural and technical factors affecting ‘Mobile’-payment services adoption: an empirical study. The Service Industries Journal, 32(9), 1489-1504.

Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.

Khan, G. F., & Wood, J. (2015). Information technology management domain: Emerging themes and keyword analysis. Scientometrics, 105(2), 959-972.

Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.

Kim, C., Tao, W., Shin, N., & Kim, K. S. (2010). An empirical study of customers’ perceptions of security and trust in e-payment systems. Electronic commerce research and applications, 9(1), 84-95.

Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537-554.

Kujala, S., Mugge, R., & Miron-Shatz, T. (2017). The role of expectations in service evaluation: A longitudinal study of a proximity mobile payment service. International Journal of Human-Computer Studies, 98, 51-61.

Lee, J. S., Chang, Y. F., & Chang, C. C. (2008). Secure authentication protocols for mobile commerce transactions. International Journal of Innovative Computing, Information and Control, 4(9), 2305-2314.

Li, W., Wen, Q., Su, Q., & Jin, Z. (2012). An efficient and secure mobile payment protocol for restricted connectivity scenarios in vehicular ad hoc network. Computer Communications, 35(2), 188-195.

Understanding The Corpus of Mobile Payment Services Research: An Analysis Of The Literature... 29 JISTEM USP, Brazil Vol. 17, 2020, e202017002 www.jistem.tecsi.org

Liang, T. P., & Yeh, Y. H. (2011). Effect of use contexts on the continuous use of mobile services: the case of mobile games. Personal and Ubiquitous Computing, 15(2), 187-196.

Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2015). Behavioral Model of Younger Users in M-Payment Systems. Journal of Organizational Computing and Electronic Commerce, 25(2), 169-190.

Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F. (2017). Intention to use new mobile payment systems: a comparative analysis of SMS and NFC payments. Economic Research-Ekonomska Istraživanja, 30(1), 892-910.

Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F. J. (2015) (b). User behaviour in QR mobile payment system: the QR Payment Acceptance Model. Technology Analysis & Strategic Management, 27(9),1031-1049.

Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464-478.

Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014) (b). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151-166.

Liu, D., Tong, C., Liu, Y., Yuan, Y., & Ju, C. (2016). Examining the adoption and continuous usage of contextaware services: An empirical study on the use of an intelligent tourist guide.Information Development, 32(3), 608-621.

Liu, J., Kauffman, R. J., & Ma, D. (2015). Competition, cooperation, and regulation: Understanding the evolution of the mobile payments technology ecosystem. Electronic Commerce Research and Applications, 14(5), 372-391.

Liu, Y., & Li, H. (2011). Exploring the impact of use context on mobile hedonic services adoption: An empirical study on mobile gaming in China. Computers in Human Behavior, 27(2), 890-898.

Lu, J., Wei, J., Yu, C. S., & Liu, C. (2017). How do post-usage factors and espoused cultural values impact mobile payment continuation?. Behaviour & Information Technology, 36(2), 140-164.

Luna, I. R. D., Montoro-Ríos, F., Liébana-Cabanillas, F., & Luna, J. G. D. (2017). NFC technology acceptance for mobile payments: A Brazilian Perspective. Revista brasileira de gestão de negócios, 19(63), 82-103.

Madan, K., Madan, K., Yadav, R., & Yadav, R. (2016). Behavioural intention to adopt mobile wallet: a developing country perspective. Journal of Indian Business Research, 8(3), 227-244.

Madureira, A. (2017). Factors that hinder the success of SIM-based mobile NFC service deployments.Telematics and Informatics, 34(1), 133-150.

Mallat, N., & Tuunainen, V. K. (2008). Exploring merchant adoption of mobile payment systems: An empirical study. E-service Journal, 6(2), 24-57.

Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information & management, 46(3), 190-195.

Martínez-Peláez, R., Toral-Cruz, H., Ruiz, J., & Velarde-Alvarado, P. (2015). P2PM-pay: Person to person mobile payment scheme controlled by expiration date. Wireless Personal Communications, 85(1), 289-304.

McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American society for information science, 41(6), 433.

Miao, M., & Jayakar, K. (2016). Mobile payments in Japan, South Korea and China: Cross-border convergence or divergence of business models?. Telecommunications Policy, 40(2), 182-196.

Molina-Castillo, F. J., Rodriguez-Guirao, A., Lopez-Nicolas, C., & Bouwman, H. (2016). Analysis of mobile pre-payment (pay in advance) and post-payment (pay later) services. International Journal of Mobile Communications, 14(5), 499-517.

Moorthy, K., Ling, C. S., Fatt, Y. W., Yee, C. M., Yin, E. C. K., Yee, K. S., & Wei, L. K. (2017). Barriers of Mobile Commerce Adoption Intention: Perceptions of Generation X in Malaysia. Journal of Theoretical and Applied Electronic Commerce Research, 12(2), 37-53.

Musa, A., Khan, H. U., & AlShare, K. A. (2015). Factors influence consumers’ adoption of mobile payment devices in Qatar. International journal of mobile communications, 13(6), 670-689.

Ngai, E. W., & Gunasekaran, A. (2007). A review for mobile commerce research and applications. Decision support systems, 43(1), 3-15.

O’Reilly, P., Duane, A., & Andreev, P. (2012). To M-Pay or not to M-Pay—Realising the potential of smart phones: conceptual modeling and empirical validation. Electronic Markets, 22(4), 229-241.

Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414.

Ooi, K. B., & Tan, G. W. H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33-46.

Pham, T. T. T., & Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in Society, 43, 159-172.

Phonthanukitithaworn, C., Sellitto, C., & Fong, M. W. (2016). A Comparative Study of Current and Potential Users of Mobile Payment Services. SAGE Open, 6(4). DOI: 2158244016675397.

Phonthanukitithaworn, C., Sellitto, C., & Fong, M. W. (2016) (b). An investigation of mobile payment (m-payment) services in Thailand. Asia-Pacific Journal of Business Administration, 8(1), 37-54.

Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management—1980–2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185-202.

Pousttchi, K., Schiessler, M., & Wiedemann, D. G. (2009). Proposing a comprehensive framework for analysis and engineering of mobile payment business models. Information Systems and E-Business Management, 7(3), 363-393.

Ramos-de-Luna, I., Montoro-Ríos, F., & Liébana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: an acceptance model approach. Information Systems and e-Business Management, 14(2), 293-314.

Ramos‐Rodríguez, A. R., & Ruíz‐Navarro, J. (2004). Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980–2000. Strategic Management Journal, 25(10), 981-1004.

Rodrigues, H., José, R., Coelho, A., Melro, A., Ferreira, M. C., Monteiro, M. P., & Ribeiro, C. (2014). MobiPag: Integrated Mobile Payment, Ticketing and Couponing Solution Based on NFC. Sensors, 14(8), 13389-13415.

Rogers, E. M. (2003). Diffusion of innovations. Free Press. New York, 551.

Rouibah, K., Lowry, P. B., & Hwang, Y. (2016). The effects of perceived enjoyment and perceived risks on trust formation and intentions to use online payment systems: New perspectives from an Arab country. Electronic Commerce Research and Applications, 19, 33-43.

Understanding The Corpus of Mobile Payment Services Research: An Analysis Of The Literature... 31

Ruiz-del-Olmo, F. J. (2014). Young People as Users of Branded Applications on Mobile Devices/Los jóvenes como usuarios de aplicaciones de marca en dispositivos móviles. Comunicar (English edition), 22(43), 73-81.

Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic commerce research and applications, 9(3), 209-216.

Seol, S., Lee, H., & Zo, H. (2016). Exploring factors affecting the adoption of mobile office in business: an integration of TPB with perceived value. International Journal of Mobile Communications, 14(1), 1-25.

Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142.

Shi, F., Liu, W., Jin, D., & Song, J. (2013). A countermeasure against wormhole attacks in MANETs using analytical hierarchy process methodology. Electronic Commerce Research, 13(3), 329-345.

Shiau, W. L. (2016). The intellectual core of enterprise information systems: a co-citation analysis. Enterprise Information Systems, 10(8), 815-844.

Shiau, W. L., & Dwivedi, Y. K. (2013). Citation and co-citation analysis to identify core and emerging knowledge in electronic commerce research. Scientometrics, 94(3), 1317-1337.

Shin, D. H. (2010). Modeling the interaction of users and mobile payment system: Conceptual framework. International Journal of Human-Computer Interaction, 26(10), 917-940.

Silic, M., & Back, A. (2016). What are the Keys to a Successful Mobile Payment System? Case of Cytizi: Mobile Payment System. Journal of Global Information Management (JGIM), 24(3), 1-20.

Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32(8), 860-873.

Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the Association for Information Science and Technology, 24(4), 265-269.

Sripalawat, J., Thongmak, M., & Ngramyarn, A. (2011). M-banking in metropolitan Bangkok and a comparison with other countries. Journal of computer information systems, 51(3), 67-76.

Tabachnick, B. G., Fidell, L. S., & Osterlind, S. J. (2001). Using multivariate statistics.

Teo, A. C., Tan, G. W. H., Ooi, K. B., & Lin, B. (2015). Why consumers adopt mobile payment? A partial least squares structural equation modelling (PLS-SEM) approach. International Journal of Mobile Communications, 13(5), 478-497.

Teo, A. C., Tan, G. W. H., Ooi, K. B., Hew, T. S., & Yew, K. T. (2015) (b). The effects of convenience and speed in m-payment. Industrial Management & Data Systems, 115(2), 311-331.

Thakur, R., & Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3), 369-392.

Upadhyay, P., & Chattopadhyay, M. (2015). Examining mobile based payment services adoption issues: A new approach using hierarchical clustering and self-organizing maps. Journal of Enterprise Information Management, 28(4), 490-507.

Upadhyay, P., & Jahanyan, S. (2016). Analyzing user perspective on the factors affecting use intention of mobile based transfer payment. Internet Research, 26(1), 38-56.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.

Wan, J., Zou, C., Zhou, K., Lu, R., & Li, D. (2014). IoT sensing framework with inter-cloud computing capability in vehicular networking. Electronic Commerce Research, 14(3), 389-416.

Wang, C. H., & Chen, S. C. (2013). Bibliometric and Social Network Analysis for Data Mining: The Intellectual Structure of Tourism Destination Literature. Journal of Testing and Evaluation, 42(1), 229-241.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly, xiii-xxiii.

White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the Association for Information Science and Technology, 32(3), 163-171.

Xin, H., Techatassanasoontorn, A. A., & Tan, F. B. (2015). Antecedents of consumer trust in mobile payment adoption. Journal of Computer Information Systems, 55(4), 1-10.

Yang, J. H., & Chang, C. C. (2012). A low computational-cost electronic payment scheme for mobile commerce with large-scale mobile users. Wireless Personal Communications, 63(1), 83-99.

Yang, J. H., Chang, Y. F., & Chen, Y. H. (2013). An efficient authenticated encryption scheme based on ECC and its application for electronic payment. Information Technology and Control, 42(4), 315-324.

Yang, L., & Lou, W. (2016). A contract-ruled economic model for QoS guarantee in mobile peer-to-peer streaming services. IEEE Transactions on Mobile Computing, 15(5), 1047-1061.

Yang, M. (2013). Churn management and policy: Measuring the effectiveness of fixed-mobile bundling on mobile subscriber retention. Journal of Media Economics, 26(4), 170-185.

Yang, M., Li, Y., Jin, D., Yuan, J., You, I., & Zeng, L. (2014). Opportunistic sharing scheme for spectrum allocation in wireless virtualization. Soft Computing, 18(9), 1685-1696.

Yang, S. (2016). Role of transfer-based and performance-based cues on initial trust in mobile shopping services: a cross-environment perspective. Information Systems and e-Business Management, 14(1), 47-70.

Yang, S., Lu, Y., Chau, P. Y., & Gupta, S. (2017). Role of channel integration on the service quality, satisfaction, and repurchase intention in a multi-channel (online-cum-mobile) retail environment. International Journal of Mobile Communications, 15(1), 1-25.

Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.

Yang, S., Wang, Y., & Wei, J. (2014) (b). Integration and consistency between web and mobile services.Industrial Management & Data Systems, 114(8), 1246-1269.

Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance.Industrial Management & Data Systems, 115(2), 253-269.

Zhong, S., & Wu, F. (2010). A collusion-resistant routing scheme for noncooperative wireless ad hoc networks. IEEE/ACM Transactions on Networking, 18(2), 582-595.

Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.

Zhou, T. (2014). An empirical examination of initial trust in mobile payment. Wireless personal communications, 77(2), 1519-1531.

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in human behavior, 26(4), 760-767.




DOI: http://dx.doi.org/10.4301/S1807-1775202017002